

Syrian Private University

Algorithms & Data Structure I

Instructor: Dr. Mouhib Alnoukari

Solving Recurrences

Divide and Conquer

- Recursive in structure
 - Divide the problem into sub-problems that are similar to the original but smaller in size
 - *Conquer* the sub-problems by solving them recursively. If they are small enough, just solve them in a straightforward manner.
 - *Combine* the solutions to create a solution to the original problem

An Example: Merge Sort

<u>Sorting Problem</u>: Sort a sequence of *n* elements into non-decreasing order.

- Divide: Divide the *n*-element sequence to be sorted into two subsequences of *n*/2 elements each
- **Conquer:** Sort the two subsequences recursively using merge sort.
- **Combine:** Merge the two sorted subsequences to produce the sorted answer.

INPUT: a sequence of *n* numbers stored in array A **OUTPUT:** an ordered sequence of *n* numbers

MergeSort (A, p, r)// sort A[p..r] by divide & conquer1if p < r2then $q \leftarrow \lfloor (p+r)/2 \rfloor$ 3MergeSort (A, p, q)4MergeSort (A, q+1, r)5Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]

Initial Call: MergeSort(A, 1, n)

Analysis of Merge Sort

- Running time **T(n)** of Merge Sort:
- Divide: computing the middle takes $\Theta(1)$
- Conquer: solving 2 sub-problems takes 2T(n/2)
- Combine: merging n elements takes $\Theta(n)$
- Total:

$$T(n) = \Theta(1)$$
if $n = 1$ $T(n) = 2T(n/2) + \Theta(n)$ if $n > 1$

 $\Rightarrow T(n) = \Theta(n \lg n)$

Recursion-Tree Method

- Recursion Trees
 - Show successive expansions of recurrences using trees.
 - Keep track of the time spent on the sub problems of a divide and conquer algorithm.

Recursion-Tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
 - The recursion-tree method can be unreliable.
 - The recursion-tree method promotes intuition, however.

Recursion Tree for Merge Sort

For the original problem, we have a cost of *cn*, plus two sub-problems each of size (n/2) and running time T(n/2).

Each of the size n/2 problems has a cost of cn/2 plus two subproblems, each costing T(n/4).

Recursion Tree for Merge Sort Continue expanding until the problem size reduces to 1.

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

cn/2cn/2*cn*/4 cn/4 cn/4cn/4

•Each level has total cost *cn*.

•Each time we go down one level, the number of sub-problems doubles, but the cost per sub-problem halves \Rightarrow cost per level remains the same.

There are lg n + 1 levels, height is lg n.
Total cost = sum of costs at each level = (lg n + 1)cn = cnlgn + cn = Θ(n lgn).

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

T(*n*)

Geometric Series

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$
 for $x \neq 1$

$$1 + x + x^2 + \dots = \frac{1}{1 - x}$$
 for $|x| < 1$

Exercise of Recursion Tree

Solve T(n) = T(n/3) + T(2n/3) + cnBuild the recursion Tree Find the Big-O

Exercise of Recursion Tree

The Master Method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n) ,where $a \ge 1, b > 1$, and f is asymptotically positive.

Idea of Master Theorem

Three Common Cases

Compare f(n) with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

f(n) grows polynomially slower than n^{logba}
 (by an n^ε factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

Three Common Cases

Compare f(n) with $n^{\log_b a}$:

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log_b a}$ grow at similar rates.

Solution: $T(n) = \Theta(n^{\log_b a} | \mathbf{g}^{k+1}n)$.

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor),

and f(n) satisfies the *regularity condition* that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

Examples

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log b^a} = n^2; f(n) = n.$
CASE 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1.$
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $\therefore T(n) = \Theta(n^2 \lg n).$

Examples

Ex. $T(n) = 4T(n/2) + n^3$ $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$ *CASE 3:* $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$ *and* $4(n/2)^3 \le cn^3$ (reg. cond.) for c = 1/2. $\therefore T(n) = \Theta(n^3).$

1. T(n) = 9T(n/3) + n2. T(n) = T(2n/3) + 13. $T(n) = 3T(n/4) + n \lg n$ 4. $T(n) = 2T(n/2) + n \lg n$

- T(n) = 9T(n/3) + n .
- For this recurrence, we have a = 9, b = 3, f(n) = n, and thus we have that $n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$. Since $f(n) = O(n^{\log_3 9 \epsilon})$, where $\epsilon = 1$, we can apply case 1 of the master theorem and conclude that the solution is $T(n) = \Theta(n^2)$.

T(n) = T(2n/3) + 1,

in which a = 1, b = 3/2, f(n) = 1, and $n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$. Case 2 applies, since $f(n) = \Theta(n^{\log_b a}) = \Theta(1)$, and thus the solution to the recurrence is $T(n) = \Theta(\lg n)$.

 $T(n) = 3T(n/4) + n \lg n ,$

we have a = 3, b = 4, $f(n) = n \lg n$, and $n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$. Since $f(n) = \Omega(n^{\log_4 3 + \epsilon})$, where $\epsilon \approx 0.2$, case 3 applies if we can show that the regularity condition holds for f(n). For sufficiently large n, we have that $af(n/b) = 3(n/4) \lg(n/4) \le (3/4)n \lg n = cf(n)$ for c = 3/4. Consequently, by case 3, the solution to the recurrence is $T(n) = \Theta(n \lg n)$.

 $T(n) = 2T(n/2) + n \lg n ,$

even though it appears to have the proper form: a = 2, b = 2, $f(n) = n \lg n$, and $n^{\log_b a} = n$. You might mistakenly think that case 3 should apply, since $f(n) = n \lg n$ is asymptotically larger than $n^{\log_b a} = n$. The problem is that it is not *polynomially* larger. The ratio $f(n)/n^{\log_b a} = (n \lg n)/n = \lg n$ is asymptotically less than n^{ϵ} for any positive constant ϵ . Consequently, the recurrence falls into the gap between case 2 and case 3. (See Exercise 4.6-2 for a solution.)