
Algorithms & Data Structure I

Syrian Private University

Instructor: Dr. Mouhib Alnoukari

Solving Recurrences

Divide and Conquer

• Recursive in structure

– Divide the problem into sub-problems that are
similar to the original but smaller in size

– Conquer the sub-problems by solving them
recursively. If they are small enough, just solve
them in a straightforward manner.

– Combine the solutions to create a solution to the
original problem

Comp 122

An Example: Merge Sort

Sorting Problem: Sort a sequence of n elements into
non-decreasing order.

• Divide: Divide the n-element sequence to be
sorted into two subsequences of n/2 elements
each

• Conquer: Sort the two subsequences recursively
using merge sort.

• Combine: Merge the two sorted subsequences to
produce the sorted answer.

Comp 122

Merge-Sort (A, p, r)

INPUT: a sequence of n numbers stored in array A

OUTPUT: an ordered sequence of n numbers

MergeSort (A, p, r) // sort A[p..r] by divide & conquer

1 if p < r

2 then q  (p+r)/2

3 MergeSort (A, p, q)

4 MergeSort (A, q+1, r)

5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]

Initial Call: MergeSort(A, 1, n)

Comp 122

Analysis of Merge Sort

• Running time T(n) of Merge Sort:

• Divide: computing the middle takes (1)

• Conquer: solving 2 sub-problems takes 2T(n/2)

• Combine: merging n elements takes (n)

• Total:
T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 T(n) = (n lg n)

Comp 122

Recursion-Tree Method

• Recursion Trees

– Show successive expansions of recurrences using
trees.

– Keep track of the time spent on the sub problems of
a divide and conquer algorithm.

Recursion-Tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion tree method is good for generating
guesses for the substitution method.

• The recursion-tree method can be unreliable.

• The recursion-tree method promotes intuition,
however.

Comp 122

Recursion Tree for Merge Sort

For the original problem,

we have a cost of cn,

plus two sub-problems

each of size (n/2) and

running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems

has a cost of cn/2 plus two sub-

problems, each costing T(n/4).

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and

merge.

Cost of sorting

subproblems.

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

1 1 1 11 1

lg n

cn

cn

cn

cn
Total : cnlgn+cn

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

1 1 1 11 1

•Each level has total cost cn.

•Each time we go down one level, the

number of sub-problems doubles, but

the cost per sub-problem halves  cost

per level remains the same.

•There are lg n + 1 levels, height is lg n.

•Total cost = sum of costs at each level =

(lg n + 1)cn = cnlgn + cn = (n lgn).

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

Example of Recursion Tree

T(n)

Solve T(n) = T(n/4) + T(n/2) + n2:

T(n/4) T(n/2)

n2

Solve T(n) = T(n/4) + T(n/2) + n2:

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:
n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

Example of Recursion Tree

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

(1)

Solve T(n) = T(n/4) + T(n/2) + n2:
n2

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

(1)

2n
n2

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

(1)

2

16
5 n

2n
n2

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

(1)

2

16
5 n

2n

2

256
25 n

n2

(n/2)2

…

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

(1)

2

16
5 n

2n

2

256
25 n

     1
3

16
52

16
5

16
52 n

…

Total =

= (n2)

n2

(n/2)2

geometric series

Example of Recursion Tree

Geometric Series

1

1
1 2

x
xx


  for |x| < 1

1

1
1

1
2

x

x
xxx

n
n








 for x  1

Solve T(n) = T(n/3) + T(2n/3) + cn

Build the recursion Tree

Find the Big-O

Exercise of Recursion Tree

Exercise of Recursion Tree

The Master Method

The master method applies to recurrences of

the form

T(n) = a T(n/b) + f (n) ,

where a  1, b > 1, and f is asymptotically

positive.

f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)

a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

#leaves = ah

= alogbn

= nlogba

nlogbaT (1)

Three Common Cases

Compare f (n) with nlogba:

1. f (n) = O(nlogba – e) for some constant e > 0.

• f (n) grows polynomially slower than nlogba

(by an ne factor).

Solution: T(n) = (nlogba) .

f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)

a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaT (1)
CASE 1: The weight increases
geometrically from the root to the
leaves. The leaves hold a constant
fraction of the total weight. (nlogba)

Three Common Cases

Compare f (n) with nlogba:

2. f (n) = (nlogba lgkn) for some constant k  0.

• f (n) and nlogba grow at similar rates.

Solution: T(n) = (nlogba lgk+1n) .

f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)

a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaT (1)CASE 2: (k = 0) The weight is
approximately the same on
each of the logbn levels.

(nlogbalg n)

Three common cases (cont.)

Compare f (n) with nlogba:

3. f (n) = W(nlogba + e) for some constant e > 0.

• f (n) grows polynomially faster than nlogba (by
an ne factor),

and f (n) satisfies the regularity condition that
a f (n/b)  c f (n) for some constant c < 1.

Solution: T(n) = (f (n)) .

f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)

a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaT (1)
CASE 3: The weight decreases
geometrically from the root to the
leaves. The root holds a constant
fraction of the total weight. (f (n))

Examples

Ex. T(n) = 4T(n/2) + n
a = 4, b = 2  nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – e) for e = 1.
 T(n) = (n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2  nlogba = n2; f (n) = n2.
CASE 2: f (n) = (n2lg0n), that is, k = 0.
 T(n) = (n2lg n).

Examples

Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2  nlogba = n2; f (n) = n3.
CASE 3: f (n) = W(n2 + e) for e = 1
and 4(n/2)3  cn3 (reg. cond.) for c = 1/2.
 T(n) = (n3).

Exercises

1. T(n) = 9T(n/3) + n
2. T(n) = T(2n/3) + 1
3. T(n) = 3T(n/4) + n lg n
4. T(n) = 2T(n/2) + n lg n

Exercises

Exercises

Exercises

Exercises

