Algorithms & Data Structure |

Solving Recurrences

Divide and Conquer

e Recursive in structure

— Divide the problem into sub-problems that are
similar to the original but smaller in size

— Conquer the sub-problems by solving them
recursively. If they are small enough, just solve
them in a straightforward manner.

— Combine the solutions to create a solution to the
original problem

An Example: Merge Sort

Sorting Problem: Sort a sequence of n elements into
non-decreasing order.

* Divide: Divide the n-element sequence to be

sorted into two subsequences of n/2 elements
each

 Conquer: Sort the two subsequences recursively
using merge sort.

 Combine: Merge the two sorted subsequences to
produce the sorted answer.

Merge-Sort (A, p, r)

INPUT: a sequence of n numbers stored in array A
OUTPUT: an ordered sequence of n numbers

MergeSort (A, p, r) // sort A[p..r] by divide & conquer

1 ifp<r

2 thenq<«L(p+r)/2]

MergeSort (A, p, Q)

MergeSort (A, g+1, r)

Merge (A, p, g, I) // merges A[p..q] with A[g+1..r]

o1 b W

Initial Call: MergeSort(A, 1, n)

Analysis of Merge Sort

* Running time T(n) of Merge Sort:

e Divide: computing the middle takes ®(1)

* Conquer: solving 2 sub-problems takes 27(n/2)
 Combine: merging n elements takes ®(n)

e Total:
T(n) = ©(1) ifn=1
T(n) =2T(n/2) + ©(n) ifn>1

= T(n) =®(n lg n)

Recursion-Tree Method

e Recursion Trees

— Show successive expansions of recurrences using
trees.

— Keep track of the time spent on the sub problems of
a divide and conquer algorithm.

Recursion-Tree method

» A recursion tree models the costs (time) of a
recursive execution of an algorithm.

* The recursion tree method Is good for generating
guesses for the substitution method.

» The recursion-tree method can be unreliable.

- The recursion-tree method promotes intuition,
however.

Recursion Tree for Merge Sort

For the original problem, Each of the size n/2 problems
we have a cost of cn, has a cost of cn/2 plus two sub-
plus two sub-problems problems, each costing T(n/4).

each of size (n/2) and

running time T(n/2). /
Cost of divide and

Cn/2 cn/2

T(n/2) T(n/2) /

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

SN o
N ANAN

cn/4 cn/4 cn/4 QR4 TT————————— > Cn

A

ch

' 1 1 1 11 1 ~ Totalcnl n +Cn>

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

*Each level has total cost cn.
*Each time we go down one level, the
C /2 Cn/2 number of sub-problems doubles, but
the cost per sub-problem halves = cost
\ per level remains the same.
*There are Ig n + 1 levels, height is Ig n.
cn/4 cn/4 cn/4 cn/4 *Total cost = sum of costs at each level =

/\ /\/\ /\ g + Den= cnlgn + cn = 6(n Ign)

111 111

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

T(n)

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n?:
/ \

T(n/4) T(n/2)

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

n2

(n/4)? (n/2)?
/. /. O\
T(n/16) T(n/8) T(n/8) T(n/4)

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

n2

/

(n/4)? (n/2)?

VRN VRN

(n/16)? (n/8) (n/8) (n/4)?

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

n> N 2
(n/4)? (n/2)?
/. /. O\
(n/16)? (n/8)? (n/8)? (n/4)?
/
/.

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

T n?
(n/a" w22 O 2
VAN 7\ 16
(n/16)? (n/8)? (n/8)? (n/4)?
/
/.

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

n> N 2

(n/4)? (/2> ~ n2
7\ VRN 16

(n/16) (n/8y (n/8y nay 25 2

Example of Recursion Tree
Solve T(n) = T(n/4) + T(n/2) + n:

n> nz
(n/ay? 0 O 2

/ AN VAN 16
(n/16)? (n/8)? (n/8)° (n/4)* & n 2

, 256

-
0(1) 2 3
2l 5+ (5 +(5))
Total =n b+16+ w) tUE) T+

= ®Sn22 geometric series
Bt e

Geometric Series

n+1
1+x+x2+---+x”=1 T forx =1
1-X
1+x+x2+---:1lx for x| <1

Exercise of Recursion Tree

Solve T(n) = T(n/3) + T(2n/3) + cn
Build the recursion Tree
Find the Big-O

Exercise of Recursion Tree

A / cn \ e cn
¢(3) C(F) wecn
logs/, n \ / \
@ e (@ (&) man o
Y

Total: O(nlgn)

The Master Method

The master method applies to recurrences of
the form

T(n) =aT(n/b) +f(n),

wherea >1,b > 1, and f is asymptotically
positive.

Idea of Master Theorem

Recursion tree:

A ftny f(n)
d
fn/b) fln/b) ... fln/b) a f (n/b)
h = log,n /\L/\
f(n/b?) f(n/b?) . fty a’f (n/b?)
/
/ . n'°sba 7°(1)
(1)

Three Common Cases

Compare f(n) with n'og2;
1. f(n) = O(n'o%a-=2) for some constant € > 0.

- f(n) grows polynomially slower than n'oga
(by an n¢ factor).

Solution: T(n) = ©(n'o9%2) .

Idea of Master Theorem

Recursion tree:

A fn) f(n)
ad
/M
f(n/b) f(n/b) L. f(n/b) a f (n/b)
h =log,n e ﬁl—)\
f(n/b?) f(n/b?) . f(n/2y a’ f (n/b?)
/
/. n'oeva T°(1)
7(1)

@(nlogba)

Three Common Cases

Compare f(n) with n'og2;
2. f(n) = O(n'eba|gkn) for some constant k > 0.

* f(n) and n'°ev? grow at similar rates.
Solution: T(n) = ®(n'°eb |gk+ln) .

h =

ldea of Master Theorem

Recursion tree:

A f(n) f(n)
d
"
f(n/b) f(n/b) L f(n/b) a f (n/b)
log,n / \IL_)\
f(n/b?) f(n/b? . fi(npd a’f (n/b?)
/
/ . n'°eve T'(1)
7(1)
\4
O(n'eeva|g n)

Three common cases (cont.)

Compare f(n) with n'og2;

3. f(n) = Q(n'o9%a+=) for some constant ¢ > 0.

- f(n) grows polynomially faster than n'c%2 (by
an n¢ factor),

and f(n) satisfies the reqularity condition that
af(n/b) <cf(n) for some constant c < 1.

Solution: T(n) = O®(f(n)) .

‘

ldea of Master Theorem

Recursion tree:

A fln) f(n)
a
_— M
f(n/b) f(n/b) . f(n/b) a f (n/b)
h = log,n / \f—)\a
f(n/b?) f(n/b?) . fy a’ f (n/b?)
/
/ . n'oesd 7'(1)

O(f (n))

Examples

Ex. T(n) =4T(n/2) + n
a=4,b=2=nlga=n? f(n) =n.
Case 1: f(n) = O(n*—¢) fore = 1.
- T(n) = ©(n?).

Ex. T(n) =4T(n/2) + n?
a=4,b=2=nl%wa=n? f(n) =n?
CASEZ f(n) = @(nzlgon) that is, k = 0.

- T(n) = ©(n?lgn).

Examples

Ex. T(n) =4T(n/2) + n3
a=4,b=2=nl%wa=n? f(n) =ns
Case 3:f(n) =Q(n?*¢) fore =1
and 4(n/2)® < cn®(reg. cond.) for c = 1/2.
s T(n) = ©(nd).

Exercises

T(n) =9T(n/3) + n
T(n) =T(2n/3) + 1
T(n) =3T(n/4) +nlgn
T(n) =2T(n/2) + nlgn

~R_ -

Exercises

T(n)=9Tn/3)+n.

For this recurrence, we have ¢ = 9, b = 3, f(n) = n, and thus we have that
n'er e = phe3® — @(n?). Since f(n) = O(n'e3°¢), where € = 1, we can apply
case | of the master theorem and conclude that the solution is 7' (1) = ®(n?).

Exercises

T(n)y=T2n/3) + 1.

in whicha = 1, b = 3/2, f(n) = 1, and n'®#r? = ploes/21 = p® = 1, Case 2
applies, since f(n) = O(n'°#r?) = ©O(1), and thus the solution to the recurrence

is T(n) = O(gn).

Exercises

T(n)=3Tn/4)+nlgn .

we have a = 3, b = 4, f(n) = nlgn, and n'%? = phe3 = O(n%7%),
Since f(n) = Q(n'#+37€) where € ~ 0.2, case 3 applies if we can show that
the regularity condition holds for f(n). For sufficiently large n, we have that
af(n/b) = 3(n/4)lg(n/4) < (3/4)nlgn = cf(n) for c = 3/4. Consequently,
by case 3, the solution to the recurrence is 7(n) = O(nlgn).

Exercises

T(n)=2T(n/2)+nlgn .

even though it appears to have the proper form: a = 2, b = 2, f(n) = nlgn,
and n'°¢»? = pn. You might mistakenly think that case 3 should apply, since

f(n) = nlgn is asymptotically larger than n'°¢»@ = pn. The problem is that it
is not polynomially larger. The ratio f(n)/n"%% = (nlgn)/n = lgn is asymp-
totically less than n€ for any positive constant €. Consequently, the recurrence falls
into the gap between case 2 and case 3. (See Exercise 4.6-2 for a solution.)

