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Solving Recurrences



Divide and Conquer

• Recursive in structure  

– Divide the problem into sub-problems that are 
similar to the original but smaller in size

– Conquer the sub-problems by solving them 
recursively.  If they are small enough, just solve 
them in a straightforward manner.

– Combine the solutions to create a solution to the 
original problem
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An Example:  Merge Sort

Sorting Problem: Sort a sequence of n elements into 
non-decreasing order.

• Divide: Divide the n-element sequence to be 
sorted into two subsequences of n/2 elements 
each

• Conquer: Sort the two subsequences recursively 
using merge sort.

• Combine: Merge the two sorted subsequences to 
produce the sorted answer.
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Merge-Sort (A, p, r)

INPUT: a sequence of n numbers stored in array A

OUTPUT: an ordered sequence of n numbers

MergeSort (A, p, r)   // sort A[p..r] by divide & conquer

1 if p < r

2 then q  (p+r)/2

3 MergeSort (A, p, q)

4 MergeSort (A, q+1, r)

5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r] 

Initial Call: MergeSort(A, 1, n)
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Analysis of Merge Sort

• Running time T(n) of Merge Sort:

• Divide: computing the middle takes (1)

• Conquer: solving 2 sub-problems takes 2T(n/2)

• Combine: merging n elements takes (n)

• Total:
T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 T(n) = (n lg n) 
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Recursion-Tree Method

• Recursion Trees

– Show successive expansions of recurrences using 
trees.

– Keep track of the time spent on the sub problems of 
a divide and conquer algorithm.



Recursion-Tree method

• A recursion tree models the costs (time) of a 
recursive execution of an algorithm.

• The recursion tree method is good for generating 
guesses for the substitution method.

• The recursion-tree method can be unreliable.

• The recursion-tree method promotes intuition, 
however.
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Recursion Tree for Merge Sort

For the original problem, 

we have a cost of cn, 

plus two sub-problems 

each of size (n/2) and 

running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems 

has a cost of cn/2 plus two sub-

problems, each costing T(n/4).

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and 

merge. 

Cost of sorting 

subproblems.



Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

1 1 1 11 1

lg n

cn

cn

cn

cn
Total : cnlgn+cn



Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

1 1 1 11 1

•Each level has total cost cn.

•Each time we go down one level, the 

number of sub-problems doubles, but 

the cost per sub-problem halves   cost 

per level remains the same.

•There are lg n + 1 levels, height is lg n. 

•Total cost = sum of costs at each level = 

(lg n + 1)cn = cnlgn + cn = (n lgn).



Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:



Example of Recursion Tree

T(n)

Solve T(n) = T(n/4) + T(n/2) + n2:



T(n/4) T(n/2)

n2

Solve T(n) = T(n/4) + T(n/2) + n2:

Example of Recursion Tree



Solve T(n) = T(n/4) + T(n/2) + n2:
n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

Example of Recursion Tree



(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

(1)

Solve T(n) = T(n/4) + T(n/2) + n2:
n2

Example of Recursion Tree



Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

(1)

2n
n2

Example of Recursion Tree



Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

(1)

2

16
5 n

2n
n2

Example of Recursion Tree



Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

(1)

2

16
5 n

2n

2

256
25 n

n2

(n/2)2

…

Example of Recursion Tree



Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

(1)

2

16
5 n

2n

2

256
25 n

     1
3

16
52

16
5

16
52 n

…

Total  =

= (n2)

n2

(n/2)2

geometric series

Example of Recursion Tree



Geometric Series
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Solve T(n) = T(n/3) + T(2n/3) + cn

Build the recursion Tree

Find the Big-O

Exercise of Recursion Tree



Exercise of Recursion Tree



The Master Method

The master method applies to recurrences of 

the form

T(n) = a T(n/b) + f (n) , 

where a  1, b > 1, and f is asymptotically 

positive.



f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)

a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

#leaves = ah

= alogbn

= nlogba

nlogbaT (1)



Three Common Cases

Compare f (n) with nlogba:

1. f (n) = O(nlogba – e) for some constant e > 0.

• f (n) grows polynomially slower than nlogba

(by an ne factor).

Solution: T(n) = (nlogba) .



f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)

a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaT (1)
CASE 1: The weight increases 
geometrically from the root to the 
leaves. The leaves hold a constant 
fraction of the total weight. (nlogba)



Three Common Cases

Compare f (n) with nlogba:

2. f (n) = (nlogba lgkn) for some constant k  0.

• f (n) and nlogba grow at similar rates.

Solution: T(n) = (nlogba lgk+1n) .



f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)

a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaT (1)CASE 2: (k = 0) The weight is 
approximately the same on 
each of the logbn levels.

(nlogbalg n)



Three common cases (cont.)

Compare f (n) with nlogba:

3. f (n) = W(nlogba + e) for some constant e > 0.

• f (n) grows polynomially faster than nlogba (by 
an ne factor),

and f (n) satisfies the regularity condition that 
a f (n/b)  c f (n) for some constant c < 1.

Solution: T(n) = ( f (n)) .



f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)

a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaT (1)
CASE 3: The weight decreases 
geometrically from the root to the 
leaves. The root holds a constant 
fraction of the total weight. ( f (n))



Examples

Ex. T(n) = 4T(n/2) + n
a = 4, b = 2  nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – e) for e = 1.
 T(n) = (n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2  nlogba = n2; f (n) = n2.
CASE 2: f (n) = (n2lg0n), that is, k = 0.
 T(n) = (n2lg n).



Examples

Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2  nlogba = n2; f (n) = n3.
CASE 3: f (n) = W(n2 + e) for e = 1
and 4(n/2)3  cn3 (reg. cond.) for c = 1/2.
 T(n) = (n3).



Exercises

1. T(n) = 9T(n/3) + n
2. T(n) = T(2n/3) + 1
3. T(n) = 3T(n/4) + n lg n
4. T(n) = 2T(n/2) + n lg n
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